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Abstract—A direct extraction method of tumor response based
on ensemble empirical mode decomposition (EEMD) is proposed
for early breast cancer detection by ultra-wide band (UWB) mi-
crowave imaging. With this approach, the image reconstruction
for the tumor detection can be realized with only extracted sig-
nals from as-detected waveforms. The calibration process executed
in the previous research for obtaining reference waveforms which
stand for signals detected from the tumor-free model is not re-
quired. The correctness of the method is testified by successfully
detecting a 4 mm tumor located inside the glandular region in one
breast model and by the model located at the interface between
the gland and the fat, respectively. The reliability of the method is
checked by distinguishing a tumor buried in the glandular tissue
whose dielectric constant is 35. The feasibility of the method is con-
firmed by showing the correct tumor information in both simula-
tion results and experimental results for the realistic 3-D printed
breast phantom.

Index Terms—Breast cancer detection, ensemble empiricalmode
decomposition (EEMD), tumor response extraction, ultra-wide
band (UWB).

I. INTRODUCTION

B REAST cancer has been one of themost common diseases
which cause many women’s death throughout the world.

The early breast cancer detection is detecting the tumor when it
is at early stage, which could help heal the patients and would
not harm the women’s health. It is clear that the best way to
control this disease is detecting it at an early stage [1]. Early
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detection can urge patients to get prompt treatment and thus
will help improve the survival rates. Early breast cancer detec-
tion has been proved to help patients to obtain prompt treat-
ment and increase their life expectancy through efforts. Cur-
rently, X-ray mammography is the conventional technique uti-
lized for the breast cancer detection [2], [3]. However, the sensi-
tivity is reduced in dense breast tissue, and the exposure to ion-
izing radiation will limit the use of this screening technique [4].
Other methods such as the Magnetic Resonance Image (MRI)
might detect this early breast cancer detection. However, there
are some fatal flaws such as the high expenses and often in-
accessible for large volume of patients. And when the diam-
eter of the tumor is smaller than the distance of the MRI de-
tecting slices, the MRI detection will miss the target. Approx-
imately 4%-34% of all breast cancers are missed by conven-
tional mammography [5], [6]. Therefore, these methods cannot
be used frequently. The breast cancer detection needs to be
taken frequently, only in this way can the women’s health be
protected. So there is tremendous amount of research in harm-
less imaging methods with high resolution. In recent years, var-
ious microwave imaging techniques have been used in early
breast cancer detection, such as ultra-wide band (UWB) mi-
crowave imaging technique, microwave tomography and so on.
UWB microwave imaging method is a radiationless, low-cost
and high-resolution technique which has attracted considerable
attention in recent years [7]. This technique is based on the big
contrast of the dielectric properties between normal breast tis-
sues and the malignant breast tissue [8]. However, the problem
is the big clutters from normal tissues and the strong backscatter
from the breast skin, in which the signal from the tumor is em-
bedded. Currently, one of the most common methods of re-
moving these clutters is using the tumor-free model, from which
the detected signal is used as the calibration waveform [9], [10].
Then the tumor response can be obtained by subtracting the cal-
ibration waveform from signals detected from the tumor-con-
tained breast model. However, in clinical cases, the tumor-free
model cannot be obtained easily as different people has dif-
ferent breast configuration. Even the ideal tumor-free model is
constructed for each detection, there would be distinctions be-
tween the real breast and the ideal tumor-free model, which may
bring errors and make the procedure of detection much more
complicated.
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The aim of this paper is to overcome the aforementioned
problem by proposing a novel signal processing approach,
which could extract the tumor response directly from the
as-detected signals obtained from the tumor-contained breast
model. The proposed method could obtain the tumor signal
directly from received signals without the employment of the
tumor-free model or any other calibration waveforms. There-
fore, a data-dependent adaptive method is needed. Empirical
mode decomposition (EMD) approach provides a facility to
help meet the requirement which is mentioned before. The
EMD is an adaptive time-frequency signal processing approach
that has better effect in analyzing nonstationary and nonlinear
data [11]. The EMD has been successfully utilized in ma-
chinery fault diagnosis and structural damage detection [12],
[13]. The EMD method can decompose any complex signal
into a collection of adaptive components, called intrinsic mode
functions (IMFs) [14]. However, the IMFs obtained by using
this method have mixed components, which fail to perform an
accurate estimation of the tumor signal extraction. Considering
the mode mixing problem, a noise assisted data analysis method
called ensemble empirical mode decomposition (EEMD),
which is introduced by Wu and Huang [15], [16], is applied in
decomposing the received signals to extract the tumor response
in this study.
This paper proposes a tumor signal extraction method based

on EEMD approach, and verifies its effectiveness in two dif-
ferent models that are introduced in Section II. The Section III
gives the detail of the signal processing procedure applied for
directly extracting the tumor responses. Section IV presents the
reconstructed images resulted from the proposedmethod as well
as the images from the previous process with the need of the cal-
ibration waveforms. Finally a conclusion to this paper is given
in Section V.

II. SYSTEM CONFIGURATION

A. MRI-Derived Breast Model
In many early studies, the models that are used in computa-

tional simulation are relative ideal. In those phantoms, the spe-
cific tissues and the whole breast are combined with classical
geometry shapes. However, the early breast cancer detection
technique needs to approach the real situation. More realistic
models in terms of the tissues, shape and so on are needed for
UWB breast cancer detection technique. Therefore, the higher
accuracy models used for the electromagnetic analysis are cre-
ated based on the Magnetic Resonance Image (MRI) shown in
Figs. 1 and 3. These two MRIs are from two different types of
breast of two patients. They are used in this study to verify the
effectiveness of the proposed method.
These two phantoms are derived from the MRIs of the pa-

tients. As shown in Figs. 1 and 3, the fat, glandular tissues
and the chest wall can be identified by using the gray value.
All MRIs are transformed from Digital Imaging and Commu-
nications in Medicine (DICOM) files and normalized into unit
8 gray-scale range. Then the image is read as gray-value pic-
tures and resized to 640 640 pixels. In this resolution, one
pixel is exactly represented 0.5 mm 0.5 mm square of the real
breast. The pixels ranged from 1 to 70 and 570 to 640, are cut

Fig. 1. A magnetic resonance image (MRI) of a breast I.

Fig. 2. Geometry configuration I of the breast numerical phantom derived from
the Magnetic Resonance Image scan shown in Fig. 1.

Fig. 3. A magnetic resonance image (MRI) of a breast II.

in order to remove the unclear margin of the MRI. Then the
Canny edge detection algorithm is applied to find the boundary
between the fatty tissues and air. Then all the tissues in the breast
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Fig. 4. Geometry configuration II of the breast numerical phantom derived
from the Magnetic Resonance Image scan shown in Fig. 3.

can be extracted andmapped into corresponding dielectric prop-
erties [17], [18]. Fig. 2 shows the derived model I, whose size
is 120 mm 116 mm. The breast tissues such as the skin, glan-
dular tissue, chest wall, and the fatty tissue are all contained
in this model. The assumed tumor with a diameter of 4 mm
is embedded inside the glandular tissue for this research, and
its specific place is , . The skin layer
is placed around the breast phantom and has varying thickness
changing between 2 mm and 3 mm. The outermost layer which
is just around the skin layer is matching medium Vaseline. This
matching medium with a dielectric constant of 2.2 is employed
onto the skin to improve the performance of the antenna [19].
Fig. 4 shows the model II that is derived from the MRI shown in
Fig. 3. And the size of this second model is 150 mm 150 mm.
This phantom also contains all the breast tissues such as the
skin, glandular tissue, chest wall, and the fatty tissue, but the
model II is very different from the model I to check the fea-
sibility of the proposed method. Besides, to investigate the in-
fluence of the clutter interference during the tumor detection, a
tumor with a diameter of 4 mm is assumed to be embedded at
the bottom and the interface of the glandular tissue, which is a
more complicate situation. This tumor is located at the place of

, . The parameters of the skin layer and
the Vaseline around the model II is just the same as model I.

B. Antenna Arrangement and Simulation Process

As shown in Fig. 2, an eight-element antenna array A1- A8
is arranged around the surface of the model I. And the Fig. 4
shows an antenna array composed of twelve antennas A1-A12
is placed around the surface of model II, whose size is bigger
than model I. The antenna design is a very important part of the
system configuration. As the sufficient information needs to be
collected for good image quality, the antennas should be able to

TABLE I
ELECTRIC PROPERTIES OF THE TISSUES IN MODEL I [20]

TABLE II
ELECTRIC PROPERTIES OF THE TISSUES IN MODEL II [21], [22]

operate over a wide band of frequencies. The antenna should be
small so that enough antennas can be arranged around the sur-
face of the breast. In these two models, a slot on-body antenna
whose detail design is reported in [20] has been employed as
a good candidate. During this detection, a Gaussian monocycle
pulse with a center frequency of 6 GHz is emitted from one an-
tenna alternately and the backscattered signals are received by
the rest of antennas. Then repeat this step for all the antennas to
get the whole series of signals.
Both the electromagnetic properties and spatial heterogeneity

of all the breast tissues are considered in the two models. The
dielectric constant and the conductivity of each tissue in
model I referred from [21] are shown in Table I. In addition,
the contrast of dielectric constant between the tumor and the
glandular tissue, which is smaller than it is in the previous re-
search case, is used to investigate the feasibility of this method.
The dielectric constant of the glandular tissue in model II is
much larger than it is in model I. In this way, the dielectric con-
stant contrast between the glandular tissue and the tumor will
be less significant. So the clutter from the glandular tissue will
be stronger than before. In this situation, the extraction of the
tumor response is much more difficult than before. The dielec-
tric constant and the conductivity of each tissue in model
II are shown in Table II [22], [23].

III. SIGNAL PROCESSING

In this section, the detail of the proposed signal processing
technique in this paper is described. The principle of the en-
semble empirical mode decomposition (EEMD) has been re-
viewed in this section. Then the selection of the optimal parame-
ters that are applied in this approach and the extraction of tumor
response signals will be described in detail. Also, in this section,
model I is used as the example.

A. Principle of Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a method that is
often considered to analyze the nonlinear and nonstationary sig-
nals. It can be applied to decompose the signals into a series of
intrinsic mode functions (IMFs). The IMFs have two following
conditions [24]:
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1) The number of extrema (the sum of the number of maxima
and minima) and the number of the zero crossings should
be equal or at most differ by one.

2) The mean of the envelope defined by local maxima and the
envelope defined by local minima should be zero.

With the above definition of the IMFs, the given signal
can be decomposed by the following steps [25]:
1) Identify all the local maxima and the local minima of the

signal . Then apply the cubic spline function to inter-
polate the local maxima and the local minima so that the
upper envelope and the lower envelope
can be obtained.

2) Calculate the mean of the upper envelope and the lower
envelope by

(1)

3) Compute the difference between the original signal
and the mean , then the first component can
be obtained as

(2)

4) Treat as the next original signal in the next iteration,
and repeat the above steps until the first IMF is ob-
tained. Then separate from the original signal
to get the residue by

(3)

5) Replace the signal with , then repeat the first step
to the fourth step until all the IMFs are obtained. Finally the
signal could thus expressed as

(4)

where means the IMF, represents the
trend, which is a monotonic function with no more than
two extremes.

However, the EMD algorithm has its own shortcoming of the
mode mixing, which is defined as a single IMF including os-
cillations of dramatically disparate scales, or the component of
a similar scale residing in different IMFs. This shortcoming al-
ways influences the accuracy of the results. To overcome this
intrinsic problem, the ensemble empirical mode decomposition
(EEMD) is introduced by [26] to improve the decomposition ca-
pability of the algorithm. The EEMDmethod is developed from
the EMD method. It is a noise assisted signal analysis method
and has been proven to be with better scale separation ability
than the EMDmethod. The procedure of the EEMDmethod can
be briefly summarized as follows:

1) Add a white noise to the original signal. Then the new
signal can be represented by

(5)

where is the magnitude of the added white noise.
2) Decompose the new signal by using EMDmethod into

a series of IMFs.
3) Repeat the above steps times by applying different white

noise with different magnitude each time. In this way, all
the IMFs will be obtained.

4) Calculate the ensemblemeans of all the IMFs, then the final
results will be obtained by

(6)

Based on the property of zero mean of the white noise, the
effects that are caused by the white noise can be cancelled out
in the final ensemble mean if there are sufficient trials. In this
way, the EEMD can effectively resolve the problem of mode
mixing, which is caused by EMD.

B. Parameter Selection
In EEMD algorithm, two critical parameters, the magnitude

of the white noise and the ensemble number , need to be
selected for different trials. The amplitude of the added white
noise should be chosen appropriately for good performance of
the EEMD method. The added white noise will not be can-
celled out after the ensemble process if the amplitude of the
added white noise is too large. Meanwhile, the problem of mode
mixing may still exist if the amplitude of the white noise is too
small. Once the amplitude of the white noise is determined, in-
creasing the ensemble number is very helpful for EEMD to re-
duce the remaining noise in each IMF. However, to some de-
gree, continuing increasing the ensemble number results in only
a minor change in errors. The lager the ensemble number is, the
more time will be taken for the computation. In the previous re-
search, the selection of these two parameters needs to satisfy the
condition described by Wu and Huang with

(7)

where the parameter represents the standard deviation of error
between the original signal and the corresponding IMF. The am-
plitude of the white noise can be expressed as

(8)

where the parameter is the standard deviation of the original
signal and is the noise level of the added white noise.
However, by following the rule shown in (7), the amplitude

of the white noise should be set as about 0.3 of the standard de-
viation of the original signal and the value of ensemble number
is over a few hundred [27], which are empirical numbers. The
rule shown in (7) is not always usable for signal processing in
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different applications. In this experiment, newmethod is applied
to set the parameters.
The relative root mean square error (RMSE) can be intro-

duced to evaluate the performance of EEMD by trying different
levels of the added white noise [28]. In this way, the optimal
level of the white noise can be determined by applying the rel-
ative RMSE by

(9)

where the represents the original signal, repre-
sents the IMFwhich has the highest correlation with the original
signal. The parameter is the number of the samples in the orig-
inal signal. The desired decomposition will separate the main
signal component from noise and other low-correlated signal
components. There must be a value of noise amplitude that max-
imizes the relative RMSE. If the relative RMSE is very small
and close to zero, it indicates that the selected IMF, ,
is close to the original signal, that is to say, the selected IMF,

, contains not only the main component in the original
signal but also part of noise and the other low-correlated or irrel-
evant signal components. Accordingly, the difference between
the original signal and the selected IMF is small and the desired
decomposition is not reached. At this point, the selected IMF,

, only contains the main signal component, and is sepa-
rated from noise and the other irrelevant signal components. The
error is from the remaining components in the original signal,
other than the selected IMF. This is the desired decomposition
result and the corresponding noise amplitude is the optimal one.
The procedure of determining the optimal noise level is as fol-
lows.
First, set a small value of the ensemble number, and an initial

noise level. Second, perform the EEMD to decompose the orig-
inal signal and calculate the relative RMSE. Only the IMF with
the highest correlation coefficient related to the original signal is
needed to calculate the relative RMSE. Third, increase the noise
level, and repeat the step two. The most appropriate noise level
is the value that maximizes the relative RMSE. In this way, the
level of the white noise can be determined.
After determining the noise level, the value of the ensemble

number should be chosen for decomposing the all the received
signals. The setting of added white noise and the selection of

are two separate parts in this experiment. The effects of the
decomposition using the EEMD are that the added white noise
series cancel each other in the final mean of the corresponding
IMFs. Nomatter what the setting of the added white noise is, the

should be large enough to eliminate the added white noise at
the end of the trial. If the ensemble number is too small, the
white noise remained in each IMF will not be cancelled out. So
a larger value of ensemble number will lead to a smaller error,
which is mainly caused by the added white noise, especially
for the high-frequency component. However, a large ensemble
number will lead a large computation cost. So if there is very

Fig. 5. The value of relative RMSE with different noise level in model I.

small change in the errors, the ensemble number can be deter-
mined.

C. Tumor Response Extraction
The EEMD method is applied in our research for the early

breast cancer detection. During the detection procedure, a
Gaussian monocycle pulse with a center frequency of 6 GHz
is emitted from one antenna alternately and the backscattered
signals are received by all the other antennas. Then repeat this
step for all the antennas to get the whole series of signals. All
the collected signals will be decomposed by the optimal EEMD
algorithm. The model I shown in Fig. 2 is used to explain the
processing procedure of the optimal EEMD method during the
breast cancer detection in detail in this part.
As shown in Fig. 5, during this trial, when the noise level is

1.2, the value of the relative RMSE is the largest. As is men-
tioned before, the lager the ensemble number, the more time
will be taken for the computation. When the value of the en-
semble number is over 50, there is almost no change in errors.
So the ensemble number 50 is used as the ensemble number in
our research for breast cancer detection. Better decomposition
performance can be obtained by setting the optimal noise level
for these all signals as 1.2 and the ensemble number as 50. For
instance, Fig. 6 shows the detected signal in the case of the im-
pulse emitted from the antenna A1 and received by the antenna
A3 and the decomposing results of this signal by using EEMD
algorithm. The signal has been decomposed into 13 IMFs (C1
to C13) and a residue (r13). To investigate the regulation of the
EEMD method in this application, Figs. 7 and 8 are presented
for the detection cases in which the emitter and the detector are
located at the different sides of the breast model. In Fig. 7, the
impulse is emitted from antennaA3 and received by antennaA7,
these two antennas are located at different sides of the breast
model. In Fig. 8, the impulse is emitted from antenna A5 and
received by antenna A8, this signal represents the collected sig-
nals of the right side of the antennas. The tumor response signal
can be extracted from these IMFs through the further signal pro-
cessing.
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Fig. 6. IMFs (C1 to C13)of the detected signal in the case of the impulse
emitted from antenna A1 and received from antenna A3 in model I. The r13
is the residual of the signal after the EEMD processing.

The Pearson’s Correlation Coefficient [30], [31] , is widely
used in statistical analysis and pattern recognition. To extract the
tumor response from all the IMFs that are obtained by the op-
timal EEMD method, the Pearson’s correlation coefficient has
been used in this section. The Pearson’s correlation coefficient
is described by

(10)
where the parameter is the number of the samples in the orig-
inal signal, is the original signal, is the mean of the
original signal, is the IMF, and is the mean of
the IMF. If the correlation coefficient is close to 1, it means
this IMF correlates the original signal. If the correlation coef-
ficient is close to 0, it means the IMF is uncorrelated with the

Fig. 7. IMFs (C1 to C13) of the detected signal in the case of the impulse
emitted from antenna A3 and received from antenna A7 in model I. The r13
is the residual of the signal after the EEMD processing.

original signal. Table III shows the correlation coefficients of all
the IMFs obtained from the as-detected signal, which is in the
case of the impulse emitted from the antenna A1 and received
by the antenna A3. Table IV shows the correlation coefficients
of all the IMFs achieved from the as-detected signal, which is
in the case of the impulse emitted from the antenna A3 and re-
ceived by the antenna A7. Table V shows the correlation co-
efficients of all the IMFs obtained from the as-detected signal,
which is in the case of the impulse emitted from the antenna A5
and received by the antenna A8. As shown in these three tables,
the correlation coefficient of the first IMF (C1) is equal to 1, be-
cause the first IMF (C1) is just the as-detected signal itself. The
correlation coefficients of 7th IMF (C7) and 8th IMF (C8) are
much bigger than the others. So it can be identified that the 7th
IMF (C7) and 8th IMF (C8) contain most of the tumor informa-
tion [29].
The correlation coefficients of all the IMFs can evaluate the

possible relative main component of the signal. But using the
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Fig. 8. IMFs (C1 to C13) of the detected signal in the case of the impulse
emitted from antenna A5 and received from antenna A8 in model I. The r13
is the residual of the signal after the EEMD processing.

TABLE III
THE CORRELATION COEFFICIENTS BETWEEN THE DETECTED SIGNAL AND

ALL THE IMFS RESPECTIVELY (THE SIGNAL IS IN THE CASE OF THE IMPULSE
EMITTED FROM ANTENNA A1 AND RECEIVED BY ANTENNA A3) IN MODEL I

correlation coefficients to extract the tumor information will not
lead to good results. So the kurtosis value can be introduced to
distinguish the tumor information and the relevant extraction
results.
To eliminate more clutters and extract the tumor response,

further study is carried out to find the most correlated IMF cor-
responding to the tumor information. In this way, the kurtosis

TABLE IV
THE CORRELATION COEFFICIENTS BETWEEN THE DETECTED SIGNAL AND

ALL THE IMFS RESPECTIVELY (THE SIGNAL IS IN THE CASE OF THE IMPULSE
EMITTED FROM ANTENNA A3 AND RECEIVED BY ANTENNA A7) IN MODEL I

TABLE V
THE CORRELATION COEFFICIENTS BETWEEN THE DETECTED SIGNAL AND

ALL THE IMFS RESPECTIVELY (THE SIGNAL IS IN THE CASE OF THE IMPULSE
EMITTED FROM ANTENNA A5 AND RECEIVED BY ANTENNA A8) IN MODEL I

value is introduced in this paper to help the extraction of the
tumor response more sensitively. The kurtosis value represents
the degree of peakedness of a dataset and is represented as a ratio
of the fourth central moment of the data to its squared variance.
The kurtosis value is defined as follows [32], [33]:

(11)

where is the expectation operator, the parameter represents
the mean value of the IMF, is the fourth mo-
ment about the mean, and is the standard deviation.
The kurtosis of a Gaussian sequence is 3 [34]. In this way, the
relations can be expressed in terms of the quantity:

which is zero for the Gaussian distribution. The kur-
tosis is also commonly referred as gaussian unlikeness, since a
larger value of Kurt implies a stronger non-gaussianity. Kurtosis
can be either positive or negative. Random variables that have
a negative kurtosis are called sub-gaussian, and those with pos-
itive kurtosis are called super-gaussian. Super-gaussian random
variables have typically a “spiky” probability density function.
Sub-gaussian random variables, on the other hand, have typi-
cally a “flat” probability density function, which is rather con-
stant near zero, and very small for values of the variable. The
ultra-wide band (UWB) imaging technique for the breast cancer
detection is developed intensively based on the contrast in the
electric properties of malignant tumor related to normal fatty
breast tissue [35]. The dielectric constant determines the ability
of the material to store the electric field energy, while the loss
factor indicates how much of that energy is converted into heat
and dissipated. With a tumor present, waves traveling through
the breast encounter a change in electrical properties, causing
the incident wave to scatter. The scattering changes the amounts
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TABLE VI
THE KURTOSIS VALUE OF ALL THE IMFS (THE SIGNAL IS IN THE CASE OF
THE IMPULSE EMITTED FROM ANTENNA A1 AND RECEIVED BY ANTENNA

A3) IN MODEL I

TABLE VII
THE KURTOSIS VALUE OF ALL THE IMFS (THE SIGNAL IS IN THE CASE OF
THE IMPULSE EMITTED FROM ANTENNA A3 AND RECEIVED BY ANTENNA

A7) IN MODEL I

TABLE VIII
THE KURTOSIS VALUE OF ALL THE IMFS (THE SIGNAL IS IN THE CASE OF
THE IMPULSE EMITTED FROM ANTENNA A5 AND RECEIVED BY ANTENNA

A8) IN MODEL I

of energy detected at the receivers and the transmitter. The kur-
tosis is a descriptor originally devised to detect and to charac-
terize transients in a signal. As the tumor has higher permit-
tivity, the amounts of the scattered energy should be larger than
the others. So the kurtosis value of the tumor signal should be
higher than those of the other signals with clutters.
As shown in Tables VI–VIII, each of the 7th IMF (C7) ob-

tained from the received signal has the largest kurtosis value
among all the IMFs. It shows that the correlation coefficient of
the 8th IMF (C8) is larger than the 7th IMF’s. This can be under-
stood that the 8th IMF (C8) is more correlated with the as-de-
tected signal, so some clutters are still contained in the 8th IMF
(C8). As the tumor has the largest dielectric constant, the signal
of the tumor response should have the largest kurtosis value.
This implies that 7th IMF (C7) contains most of the tumor re-
sponse, which can be used to reconstruct the tumor image.
All the 7th IMFs that are obtained from all the received sig-

nals are processed by the confocal microwave imaging (CMI)
approach [36], which is also called Delay-and-Sum, to form the
image. The reconstructed image is created by time-shifting and
summing data points from each integrated selected tumor signal
(such as 7th IMF) for each synthetic focal point in the breast.

Fig. 9. Image reconstruction of Model I by employing the proposed optimal
EEMD method.

The intensity of a pixel in the reconstructed image sum for a
specific synthetic focal point is assigned to be the square of the
coherently summed values

(12)

where the weights are introduced to compensate the radial
spreading of each wave as it propagates from the transmitting
antenna, and is the time shifted signal. The results are
shown in the next section.

IV. RESULTS AND DISCUSSION

A. Reconstructed Images of Model I

To test the proposed extraction method, a tumor with the di-
ameter of 4 mm is inserted in the phantom shown in Fig. 2. In
particular, the tumor is located within the glandular region. In
the imaging process, the 7th IMFs (C7) of all the signals de-
tected by the antenna array are applied in the CMI algorithm
in our study. As presented in Fig. 9, the CMI algorithm is em-
ployed to create the reconstructed image of model I. This recon-
structed image shows the correct tumor information. The correct
position of the tumor can be observed clearly. This result ver-
ifies the correctness of the proposed extraction method in this
study.
The tumor-free model is also used here for comparison to

verify the accuracy of the result. Fig. 10 shows the result of
using the calibration waveform that is obtained from the tumor-
free model. By contrast, the result of using the proposed method
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Fig. 10. Image reconstruction of Model I by employing tumor-free model for
comparison.

in this paper is quite right compared to the previous work which
uses the tumor-free model.

B. Reconstructed Images of Model II

The proposed approach is also tested for the case of higher
noise level. For this purpose, model II shown in Fig. 4 is used. In
this phantom, the dielectric constant contrast between the glan-
dular and the tumor is very small. This allows the assessment of
the detection system for the critical situation of reduced dielec-
tric constant contrast between the tumor and the surrounding
tissues. According to the same parameter selection procedure in
model I, the parameters are set as and in model
II. Fig. 11 shows the result of using the proposed method in this
paper. The correct tumor information shown in the image veri-
fies the correctness and the feasibility of our proposed method.
It can be concluded that the result of using the proposed signal
processing method in this paper gives the correct location of the
tumor. For comparison, Fig. 12 gives the reconstructed image
by adopting the tumor-free model.
In Figs. 9 and 11, the red color intensity represents tumor

response as the red color represents the highest energy intensity.
The tumor size and position can be recognized accurately, as
shown in Fig. 9, the tumor is at the position of (71 mm, 55 mm).
Also, as shown in Fig. 11, the tumor is at the position of (89 mm,
108 mm). They all have very small deviations from the exact
tumor positions compared with the Model I shown in Fig. 2 and
the Model II shown in Fig. 4. But these deviations are fine with
the exact position shown in these two models.
The correctness of this tumor response extraction method can

be verified from these four reconstructed images. It can be con-
cluded that the tumor in the glandular region can also be distin-
guished successfully. The feasibility of this method is confirmed

Fig. 11. Image reconstruction of Model II by employing the proposed optimal
EEMD method.

Fig. 12. Image reconstruction of Model II by employing tumor-free model for
comparison.

by detecting a tumor with a diameter of 4 mm which is buried
in the breast with a smaller dielectric constant contrast between
the tumor and the glandular tissues. These results verify that this
method could adapt to different types of the breast in clinical
cases. This method could directly extract the tumor response
from the as-detected signals. In this way, the detecting proce-
dure can be much more efficient and convenient by using this
method.
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Fig. 13. Photograph of 3-D printed breast phantom with antennas attached on
the surface. (a) Top view. (b) Side view.

C. Experiment Verification

The proposed approach is also tested by detecting a breast
tumor phantom embedded in a 3-D printed breast model. The
numerical data of the 3-D printed breast phantom was derived
from the Class III numerical breast phantom in the University
of Wisconsin Computational Laboratory (UWCEM) breast
phantom repository [37].
The outer shell of the breast phantom is made of acrylonitrile

butadiene styrene (ABS) plastic. The interior of this phantom
is filled with Silicone and a solution of ethyl alcohol and water.
The tumor phantom is made of a cured porkmeat with the size of
10 mm 10 mm 10 mm, which is located at the bottom of the
interior void at the position of , ,

. Fig. 13 shows the photograph of the breast phantom.
The measurement set-up for breast cancer detection is shown in
Fig. 14.
A radar-based breast cancer detection system was developed

by using a wide-slot and a stacked patch antenna [38]. A com-
pact 4 4 planar UWB antenna array with the total size of
44 mm 52.4 mm was developed for this system. The antenna
used in this system consists of a square slot in a ground plane
on one side of a Duroid RT 6010LM substrate with a relative
permittivity of 10.2. A forked microtrip feed was formed on the
other side. And this microtrip splits from a 50 feed into two
100 to excite the slot in the wide bandwidth [20]. The size of
the slot antenna was 11.0 mm 13.1 mm. SMP connectors were
soldered. In this detecting system, the Agilent 81142A pulse
pattern generator, E8361A oscilloscope, 34980A multifunction
switch, MT-417 16 port RF switch box and SHF 810 power am-
plifier were also used to help this detection carry out. During this
detection, there are 192 series of signals, which means 192 se-
ries of raw data, contributing in the imaging process.

Fig. 14. Measurement set up for breast cancer detection.

Fig. 15. The value of relative RMSE with different noise level for the
experimental phantom.

In the detection system, a serial pulse data are firstly gen-
erated by the pulse pattern generator and transmitted to differ-
entiator to form the Gaussian monocycle pulse (GMP) signal.
Then the GMP is amplified by the amplifier and transmitted to
the switching matrix. The switching matrix will guide the GMP
signal to a certain transmitting antenna to illuminate the breast.
A multi-function switch is used to control the switching matrix.
Then the reflected signals are captured by the other antennas and
chosen in turn by the switching matrix. Then the oscilloscope is
used to read and record the reflected signals. After all the signals
are recorded, the EEMD and CMI algorithms are used for signal
processing and image reconstruction by a PC with MATLAB to
find the position of the breast tumor.
After getting the as-detected signals, the proposed EEMD

method is applied in extracting the tumor signal. In this detec-
tion, the noise level selection is shown in Fig. 15. It can be found
that the noise level should be 1.1. And the ensemble number is
50, which is a proper number. The decomposition result of the
detected signal in the case of the impulse emitted from antenna
A6 and received from antenna A3 is shown in Fig. 16. After get-
ting the decomposition results of all the as-detected signals, the
correlation coefficients and the kurtosis values of all the IMFs
are calculated. Table IX shows the correlation coefficients of all
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Fig. 16. IMFs (C1 to C13) of the detected signal for the experimental phantom
in the case of the impulse emitted from antenna A6 and received from antenna
A3. The r12 is the residual of the signal after the EEMD processing.

the IMFs obtained from the as-detected signal, which is in the
case of the impulse emitted from the antenna A6 and received
by the antenna A3. It can be found that the 9th IMF (C9), 10th
IMF (C10), and 11th IMF (C11) have bigger correlation coeffi-
cients than the other IMFs. As shown in Table X, the 9th IMF
(C9) obtained from the received signal has the biggest kurtosis
value among these three IMFs (C9, C10, C11). In the case of
the impulse emitted from antenna A6 and received from antenna
A3, the 9th IMF (C9) is selected as the tumor responding signal.
In this detection, the tumor signal is selected among the IMFs
which have the bigger correlation coefficients. Then choose the
IMF with biggest kurtosis value among the selected IMFs as the
tumor signal. All the tumor signals extracted from all the as-de-
tected signals are processed by the confocal microwave imaging
(CMI) approach.
Figs. 17 and 18 show the results of using the proposedmethod

in this paper. It can be found in these results that the tumor po-
sition is (50 mm, 50 mm, 30 mm), which has deviation with the

TABLE IX
THE CORRELATION COEFFICIENTS BETWEEN THE DETECTED SIGNAL AND

ALL THE IMFS RESPECTIVELY (THE SIGNAL IS IN THE CASE OF THE IMPULSE
EMITTED FROM ANTENNA A6 AND RECEIVED BY ANTENNA A3)

TABLE X
THE KURTOSIS VALUE OF ALL THE IMFS (THE SIGNAL IS IN THE CASE OF THE
IMPULSE EMITTED FROM ANTENNA A6 AND RECEIVED BY ANTENNA A3)

Fig. 17. Image reconstruction of the experimental phantom.

exact tumor position. The reason might be that the permittivity
of thematerials that are filled in the 3-D phantom and the permit-
tivity of the outer shell of the breast phantom are different. The
velocity of the microwave propagating in breast tissues is corre-
lated with the permittivity of the materials. So the velocity of the
signal will influence the accuracy of the results. It can be found
in Figs. 9 and 11 that the detected locations of the tumors also
have small deviations compared to the exact positions of the as-
sumed tumors in the models. For model I, as shown in Fig. 2, the
tumor is assumed at the position of (71 mm, 57 mm). The detec-
tion result with EEMD for model I is shown in Fig. 9, the tumor
is located at (71mm, 55mm). Also, for model II shown in Fig. 4,
the tumor is assumed at the position of (95 mm, 105 mm). The
detection result with EEMD for model II is shown in Fig. 11,
the tumor is located at (89 mm, 108 mm). For the experimental
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Fig. 18. Image reconstruction of the experimental phantom in slices (a) -
plane, (b) - plane, and (c) - plane.

test, the tumor is inserted at the position of (55 mm, 55 mm,
30 mm). The detecting result with EEMD shown in the recon-

structed image is (50 mm, 50 mm, 30 mm). These deviations
are acceptable with respect to the UWB breast tumor detection.
The reason of the location deviation might be that the velocity
of electromagnetic waves applied to the imaging process varies
slightly due to the dielectric constant distribution in the compli-
cated breast tissues. And some clutters from the interior of the
breast still exist in the extracted tumor signal and the residue
of the added white noise has not been cancelled completely.
However, even using the subtraction method with the calibra-
tion waveform, which stands for the ideal situation, the results
also have some deviations probably due to the value of the wave
velocity used in the imaging algorithm. These limitations will be
further investigated to improve our future study.

D. Comparison With Other Breast Cancer Detection Methods
Currently there are many other early breast cancer detection

methods as shown in Table XI. The group of Hagness used
distorted born iterative method (DBIM) for microwave breast
imaging [39]. The group of Elise C.Fear developed a technique
to estimate the internal structure of experimental objects using
radar techniques [40]. The group of Maciej Klemm rotates the
antenna array. Rotation gives them two sets of measured data,
in which undesired signals such as antenna coupling, or skin
reflections are almost identical and appear at the same time po-
sition, therefore they can be eliminated [41]. In [42], they use
gold nanoparticles as the contrast agent to change the average
electrical properties of cancerous tissues. The group of Carey
M. Rappaport proposed a hybrid Digital Breast Tomosynthesis
(DBT) and microwave Nearfield Radar Imaging (NRI) tech-
nique for detecting breast cancer [43]. The group of Takashi
Takenaka proposed a three dimensional inverse scattering tech-
nique, called forward-backward time-stepping (FBTS), which
is applied to the reconstruction of the microwave properties of
the breast [44].The group of P.M. Meaney proposed a clinical
3-D microwave tomographic imaging method for the breast,
which is able to measure signals down to levels compatible with
sub-centimeter image resolution and overcomes the enormous
time burden [45]. And many other studies are extensively car-
rying out on the UWB breast cancer detection.
The proposed method in this paper is convenient in the sense

that the components are derived directly from the data. The
EEMD method is very adaptive, as its bases are amplitude/fre-
quency modulated locally, data-adaptive, and sparse. This fa-
cilitates the discovery of intrinsic patterns at multiple scales,
while not requiring the rigid assumptions of harmonic or sta-
tionary data structures. Also, the proposed method can directly
extract the tumor signal from the as-detected signals. It is much
more convenient than before as the tumor response extraction
needs to subtract the calibration waveform in the past studies.
The proposed method avoids using any calibration waveform.
And it does not need complex equipment or large scale of calcu-
lation, which makes the detection process much more efficient
and convenient in the future clinical application.

V. CONCLUSION
A tumor response extraction approach which can directly

extract the tumor signal from the as-detected signals is pre-
sented in detail. The proposed method is based on the EEMD
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TABLE XI
COMPARISON OF THE OTHER EARLY BREAST CANCER DETECTION METHODS

method. This method is applied in detecting two simulation
models (Figs. 2 and 4) based on the clinical MRI images of two
different patients, and one real prototype which is made by the

3D-printing based on the UWCEM breast phantom repository
to simulate a real patient’s breast shown in Fig. 13 [37]. Two
different simulation models in which the different effects of
the clutter of the glandular are taken into consideration during
the imaging process to verify the feasibility of this proposed
approach. Also, the experiment results confirm the correctness
and the feasibility of the proposed method in this paper.
Consequently, the method given in this paper has the feasi-

bility in detecting different cases of the breast with respect to the
clinical cases. This proposed approach avoids the use of any cal-
ibration waveform of the tumor-free model. It has been shown
that the proposed method offers the efficient detection even for
a tumor of 4 mm diameter located within the glandular or at
the interface between the gland and fat. The tumor response can
also be extracted in the case that the glandular tissue has larger
dielectric constant of 35. Our study indicates that the proposed
approach can be an effective alternative to direct extraction of
the tumor response.
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